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The Development of a Generic Innovation Network Simulation Platform

I. Introduction

Innovation is increasingly recognized as requiring the convergence of many sources of knowledge

and skill, usually linked in the form of a network. Today, few innovations can be assigned to a single

specific technological field or even a specific firm (e.g. Klein, 1992). Accordingly, firms cannot

expect to keep pace with the development of all relevant technologies without drawing on external

knowledge sources. In this respect, today innovation networks are widely considered as an efficient

mean of industrial organization of complex R&D processes. In most of the recent research in

industrial economics and new innovation theory the increasing complexity of new knowledge, the

accelerating pace of the creation of new knowledge and the shortening of industry life cycles are

considered to be responsible for the rising importance of innovation networks.1 Thus, mechanisms of

learning and knowledge creation play the decisive role in the emergence of networks. In this light,

networks are to be considered as a component of the emerging knowledge based society, in which

knowledge is crucial for economic growth and competitiveness. In the knowledge based society not

only the quantity of knowledge used is greater but also the mechanisms of knowledge creation and

utilization are changing.

Although recent work in evolutionary economics and elsewhere has examined the role of innovation

networks in technical change, but it has mainly been at the level of description, introducing for

example the concept of national (Nelson, 1993) or regional (Cooke/Morgan, 1994) innovation

systems. It has proved difficult to describe the complex dynamics of innovation networks using

conventional methods of analysis (e.g. Pyka, 1999). In this presentation, we introduce a simulation

approach developed by referring to a general theoretical model of innovation networks (Gilbert,

1999) and four empirically oriented conceptions of actual innovation networks. We consider

innovation networks as evolving from the dynamic and contingent linkage of heterogeneous units

each possessing different bundles of knowledge and skill.

                        
1 See e.g. Malerba, F. (1992) and Eliasson, G. (1995).
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In order to study these co-evolutionary systems, the Self-Organizing Innovation Networks (SEIN)

project2 has assembled case studies to provide a practical cover set for systems of this type (see e.g.

Weber/Paul, 1999, Saviotti/Pyka, 1999). The project has two primary foci: i) the empirical

investigation of particular examples drawing on traditional techniques of social sciences and

developing a typology of innovation networks (Ahrweiler, 1999) and ii) building on this, the

development of a simulation platform for computational experiments in order to investigate the

dynamics of technological collaborations and the emergence of persistent innovation networks.

To ensure commensurability between the empirically-oriented case studies and the theoretically-

oriented simulation model, we are taking a two-pronged approach: the simulation platform supports

the implementation of an abstract model of an innovation network (Gilbert, 1999), and, also

constitutes the overall framework for the application of the specific case studies. This paper deals

with the design of the platform to support the abstract model and its first application to the

Biotechnology sector. For this purpose we start by motivating our approach from a methodological

perspective by introducing simulation techniques as a tool for theory development. The basic

components of the platform are then discussed and filled in by applying them to the Biotech case

study. The paper concludes with some methodological considerations placing the analysis in a

position between a purely deductive theoretical and a purely inductive empirical approach.

II. Methodological motivation

Since the experimentation structure drives the functionality of the simulation, the inputs and outputs of

the simulation map directly to the premises and hypotheses under consideration.  Since many of the

premises this simulation platform will be asked to consider are programmatic (each experiment will

consider actors who behave differently and constitute a different class structure and hierarchy, etc),

part of the specification of those premises must be done in a programming language, rather than with

a single, generic, parametrizable actor.  Both that programmatic specification plus the usual initial

conditions for any given run of the simulator constitute the inputs or premises.  The outputs will

typically be aggregate measures of the state of the simulation as it executes.  These measures, like the

individual models of the actors, themselves, will be abstracted to a large extent.

                        
2 The SEIN project is supported by the European Commission’s Framework 4 Programme, contract SOEI-CT-98-
1107.  We acknowledge the assistance and advice of the other members of the project.
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Since both the specification of the simulation (programmatic and initial conditions) and the measures

are abstracted, we run the risk of inscription errors (creating our simulation in such a way that it is

guaranteed to generate the results we seek).  For this reason, close attention must be paid to

causality in the simulation.  An explicit separation is required between premises and hypotheses or

between inputs and outputs.  The mediator between these, the mechanism or dynamics, has to

provide verifiable causal chains.  For example, if, say, the actors in a simulation are defined to use a

single broadcast channel of communication (meaning that all actors can listen in on any other actor's

communications), the simulation will implicitly force interdependence between the causal chains of

each of the actors.  If a measure is then made of the connectivity or similarity between the internal

state of the population of actor, the interdependence must be factored into the explanatory use of

that measure.

A disciplined way to deal with the mediation between inputs and outputs of a simulation is to

explicitly define observables for the model as measuring points on the various causal chains.

Observables are defined as particular and specific elements in the simulation from which data can be

taken.  They are strategically placed so as to provide input to the calculations necessary to deduce

the expected phenomena from the outputs of the simulation.  This "data reduction" (which might more

properly be called "data transformation") process is the foundation for simulation validation, where

the simulation is compared to data taken from the real world, and scientific visualization, which

transduces the outputs into a form where we can use our visual-spatial intuition to help us understand

the dynamics of the mechanism we created.  Data reduction then provides both the analytical and

intuitive access to the dynamical system required for our, often ambiguous, criteria for emergent

phenomena.  With this in mind, a simulation must provide not only those observable points that

support the hypotheses; but it must also provide a smattering of other observables in order to help us

discover dynamics embedded in the simulation that we either mistakenly built in or that realize non-

linearity.  A methodological point to be made here is that distinguishing between the former and the

latter type of embedded dynamic is often difficult; so an effort must be made from the beginning to

distribute observables throughout the simulation that supports this distinction.

In order to provide a flexible enough framework for a reasonable distribution of observables in all the

simulations our platform will support, we designed a simulator that tolerates the development of

abstract, social network simulations as well as the implementation of specific, validateable, case
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studies.  This allows our simulator to support as wide a range of functionality as possible with respect

to the many ways simulation can be used to aid scientific study (Gross 2000).

III. Innovation networks

 In an influential monograph, Gibbons et al. (1994) argued that knowledge production is in the

process of changing from its ‘traditional’ locus in the ivory towers of academe to being much more

closely connected with application contexts. Knowledge production in ”Mode 2” is non-hierarchical

and heterogeneously organised. The organisation of knowledge production is flexible, fluent and

transitory:

Examples of this are numerous environmental and agricultural matters, diet and

health problems, computerised databanks and privacy. Interactions between

science and technology, on the one hand, and social issues on the other have

intensified. The issues are essentially public ones, to be debated in hybrid fora in

which there is no entrance ticket in terms of expertise (Gibbons et al, 1994: 148).

The economic aspects of innovation have also received increasing attention. Based on the path-

breaking work of Nelson and Winter (1982), the Schumpeterian research tradition has been merged

with organisational and behavioural elements (especially Cyert and March 1963, Simon 1955) within

an evolutionary framework of variation, selection and historical time, in order to capture the

dynamics of innovation and their impact on growth, trade and technological change (cf. Dosi et al.

1988). One of the major motivations behind this work was a discontent with the lack of explanatory

power of neo-classical economics in dealing with issues of technological change.  In evolutionary

economics, the technological element is captured in notions such as ‘technological trajectories’, i.e.

distinct paths of technological development which dominate others and become selected. Several

mechanisms have been identified which lead to the establishment of such trajectories. Prominent

among these are the mental framework of scientists and engineers, labelled by Dosi (1982) as

‘technological paradigms’ (cf. Sahal 1985, Nelson 1987). Other important mechanisms are the

persistence of established technological and economic structures or ‘lock-ins’ into certain

technological pathways as a result of a reinforcement of minor comparative advantages or network

externalities. In organisational and behavioural terms, evolutionary economics departs from the notion
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of profit-maximising agents and adopts the concept of ‘routines’ to describe decision-making

processes.

While the earlier work of Nelson and Winter emphasises the market as the main selection

environment of technologies, later contributions from a systems perspective pursue a wider

approach, and focus on institutional elements as constraining the decision behaviour regarding

innovations. Such ‘systems of innovation’ have been identified, especially at national (cf. Lundvall

1992, Nelson 1993), but also at regional levels (cf. Morgan 1997). Within this system context,

learning processes among actors are regarded as being crucial, especially those between the users

and suppliers and between competitors. From an evolutionary perspective, longer-term,

paradigmatic changes in knowledge production are caused by changing patterns of selection in

different social spheres: science and technology development, economic development, social

changes, institutional factors, and mental frameworks.

The contributions of the sociological literature on innovation and industry dynamics, complements the

work of evolutionary economics at the micro-level. Network analysis has revealed that new

technological innovations are often a ‘social construct’ rather than or in addition to emanating from

scientific and technological advances. Network relationships, which complement traditional markets

and hierarchies have become more and more important for the production of knowledge.

Systematic efforts using concepts such as ‘actor networks’ (Callon 1992) or ‘socio-technical

constituencies’ (Molina 1993) have provided initial, if rather static analyses, but do not allow one to

study and understand the dynamic behaviour of innovation networks.

Empirical research on the impact of policy measures, especially of regulation, has confirmed the

important role played by the political realm in innovation processes. Recent work on policy networks

has demonstrated the importance of close interactions between policy-makers and technology-

makers for shaping the institutional and political environment of innovation processes (see for

example in Marin and Mayntz 1991, Mayntz and Scharpf 1995). It recognises the need to look at

actor constellations that shape the outcome of policy making processes, and at the interdependencies

between institutional change and actor strategies.

In sum, the economic, sociological and policy literatures have begun to demonstrate that recent

developments in knowledge production can usefully be conceptualised in terms of innovation

networks.  Nevertheless, they still leave several basic questions unanswered.  There is no clear
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definition of what an innovation network is. Rather there are numerous specifications, each

emphasising different aspects depending on the perspective of the proposer.  Secondly, it is not clear

whether there is a single phenomenon applicable to all spheres of innovation, or disparate processes

with little or no commonality.  Do the innovation networks in biotechnology have the same

characteristics as those in telecommunications? Is it useful to treat the processes of knowledge

production in the two sectors as similar?  Thirdly, the literature is rather silent about the dynamics of

innovation networks: how they arise, the growth processes they undergo, and the way they die or

merge into other networks.

It is therefore necessary to begin to elaborate a theory of what constitutes an innovation network,

together with its dynamics. In this paper we make a start by developing a simulation model of a

‘generic’ innovation network.  The role of simulation in this context is not to create a facsimile of any

particular innovation network that could be used for prediction, but to use simulation to assist in the

exploration of the consequences of various assumptions and initial conditions, that is, to use

simulation as a tool for the refinement of theory. The first part of this paper is concerned with the

development of an abstract simulation model that could constitute a dynamic theory of innovation

networks. In the second part of the paper, we apply this model to the particular case of

biotechnology to show how the generic theory can be used to illuminate innovation in specific

sectors.

The methodology we have adopted accords with Axelrod’s (1997) description of the value of

simulation:

Simulation is a third way of doing science. Like deduction, it starts with a set of

explicit assumptions. But unlike deduction, it does not prove theorems. Instead a

simulation generates data that can be analyzed inductively. Unlike typical

induction, however, the simulated data comes from a rigorously specified set of

rules rather than direct measurement of the real world. While induction can be

used to find patterns in data, and deduction can be used to find consequences of

assumptions, simulation modeling can be used to aid intuition (Axelrod, 1997: 24-

5)
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IV. Description of the Model

The following description of the model is given in a very general form because the simulation platform

can be applied to different contexts, in particular the four different case studies of the SEIN project,

and can be used to emphasise different perspectives e.g. the economic or sociological perspective on

the evolution of innovation networks. Later, the model is applied to the Biotech case in order to

ground the abstract modelling concepts.

 Actors

The starting point for our conceptualisation of an innovation network is the actors.  These are mainly

firms engaged in research and development (R&D).  In addition, there are also political actors,

venture capitalists, and universities and public research institutes that bridge the gap between applied

and basic research.

Actors are represented as code that has the standard attributes of intelligent agents (Wooldridge and

Jennings 1995):

• autonomy (operating without other agents having direct control of their actions and internal

state)

• social ability (able to interact with other agents)

• reactivity (able to perceive their environment and respond to it)

• proactivity (able to take the initiative, engaging in goal-directed behaviour).

The actors in the simulation are able to learn from their own endeavors in research and from other

actors with which they collaborate. The choice of whether to collaborate or to invest in research on

their own, and the scale of R&D investment (and therefore its impact on their knowledge) is

determined by the actors’ strategy, which itself is an element of the actors’ knowledge base.

 Kenes

For the representation of actors we draw on a genetic description following the concept of kenes

(Gilbert 1997). A kene is a collection of technological capabilities in different technological fields (1,

2, ... n)  C1, C2, ..., Cn and is used as an approximation of the knowledge base of an actor. Each
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capability, C1 to Ci, has a qualitative or quantitative value, one from a range of possibilities for that

capability.  The idea of a kene is illustrated in figure 1.

C1 C2 C3 C4 C5 C6 C7 C8 C9

State of the art Technological and scientific  frontier

window

Fig. 1: A kene

A kene can grow in length and complexity thereby allowing the emergence of new knowledge fields.

New technological capabilities can be added and old ones become obsolete. In this respect the kene

is considered as a variable length window, shifting to the right as new capabilities are developed.

Besides technological capabilities, an actor also acquires experiences (absorptive capacities3,

experience in networking4 and in selecting a cooperation partner and so on) that can be summarized

under the notion of competencies and that reflect the knowledge history of the actor. Actors also

retain factual data about their past performance, number of former partnerships etc.

To summarize, actors are defined by their kenes, their competencies and their structural and

behavioral attributes which determine their ability to observe, anticipate and design the product

space. Accordingly, the actors in our model of innovation networks are heterogeneous because they

differ in knowledge, experience, performance capacities, power, access to resources and in their

intentions to design, shape, join and change networks.

Actors take advantage of their technological capabilities to produce artefacts. This is modeled by

evaluating the kene to yield a list of attributes describing the characteristics of the potential outcome

of the innovation process.  Depending on the setting, the artefact might represent a new design, a

new drug, new knowledge for which a patent application could be made, or a new discovery.

The Innovation Oracle

This potential innovation then serves as an input to an institution we label the innovation oracle.

This is a ‘black box’ which evaluates and selects those artefacts that are to count as innovations. Fig.

2 illustrates the scheme.

                        
3 Cohen/Levinthal (1989).
4 See e.g. Pyka/Saviotti (2000).
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potential
artefact

innovation
oracle

artefact

kene

fitness of the

reward flow$

Fig. 2: From kenes to artefact

The oracle receives the potential innovation and generates three outputs: a value akin to a fitness

measure about the success of the innovation; a report which proposes, in general terms, the type of

additional knowledge that might be required to improve the innovation; and a reward that flows to

the successful innovators. The oracle thus constitutes the selection environment for innovations.  Its

design will vary between case study settings, to reflect the determinants of whether innovations

succeed.  For example, a journal editor has the role of an innovation oracle in the scientific

community, pronouncing on the novelty and significance of submissions; in the pharmaceutical

market, regulators carry out some of the oracle role.  With the help of the oracle’s report, actors

decide how to improve their knowledge base.  There are two strategies available: actors can decide

to go-it-alone, or they can decide to learn from external knowledge sources by initiating or joining an

innovation network.

Research and Development

Actors are able to invest the rewards that they obtain from successful innovation (e.g. money from

the sale of intellectual property, or prestige from the publication of successful inventions) into

research and development.  R&D can have two consequences:  first, the values of particular

capabilities can change (remaining within the range of possible values).  Second, much more rarely

and involving much greater investment, the actor can add a wholly new capability to its knowledge

base by means of R&D.
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Networks

An innovation network consists of at least two actors joined by links such as contracts and informal

agreements.  Participate in an innovation network allows actors to get access to the capabilities of

other actors which are otherwise difficult or impossible to be simply obtain due to their substantial

local5 and tacit6 components. However, choosing the cooperative strategy also means sharing one’s

own knowledge with other actors. They are likely to become competitors when it comes to the

application of the knowledge generated within the network. Therefore, the actors need to evaluate

carefully the likely advantages and disadvantages of participating an innovation network.

Ultimately, if the degree of integration, stability and inter-connection is sufficient, networks can come

to resemble autonomous agents themselves.

To find a partner or an innovation network in which to participate, actors have to initiate a search.

The search will use the actor’s knowledge of the environment and on the dispositions and restrictions

of each participating actor.  The effort devoted to search will depend on the search costs the actors

are willing to pay, a characteristic that differs substantially among the case studies. After having found

a subset of potential partners which are in line with the actor’s demands (e.g. ”what capabilities am I

looking for?”, ”what kind of reputation should the likely cooperation partner have?” etc.) the actor

ranks the potential partners in the subset and tries to negotiate an agreement with the best one.

The actors’ experiences in integrating external knowledge and their absorptive capacities are of

crucial importance. These traits affect the effectiveness with which the actors can learn from the other

actors in the network. Learning from network partners is achieved by combining kenes using

techniques drawn from genetic programming. This is discussed in more detail in section V.

 Case Study Specific Frameworks

The distribution of rewards from successful innovation is specified in the collaboration agreement

(e.g. R&D/cooperation contracts dealing with distribution of income, intellectual property,

knowledge flows etc.) and models the prevailing behavior in the sectors described in the case

studies. The calculation of the value attached to each successful innovation is the job of the

innovation oracle.  This varies between case studies, but may be specified as a set of ordinary

                        
5 See Stiglitz (1987).
6 See Polanyi (1967).
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differential equations (or other analytical model) describing the general framework for competition,

diffusion etc. in the sector.

Summary

Figure 3 summarizes the basic structure of the model.

Network Actor with kene

Research and
development

Search for a partner

Decide whether
to seek a partner

Innovation oracle

Actor with kene
Actor with kene

Decision

Potential
innovation

Reward

New
capabilities

Innovation
report

Fitness

Collaboration agreement

Distribute reward
to network

Figure 3:  The structure of the model

The kenes of the agents are transformed in case study specific ways to generate potential innovations

which are evaluated by an innovation oracle to assess whether they are true innovations ready to be

exploited  The actors obtain information from the oracle to support their decision about how to

design their future R&D processes and whether they should join or initiate an innovation network. If

they successfully locate a potential partner who is willing to cooperate, an innovation network

emerges. This influences the learning processes, by modifying  existing capabilities and creating new

ones. When the innovation is successful, the ‘rents’ (rewards) are distributed according to the case

study specific rewarding mechanism and the rules of the network concerning the distribution of

intellectual property rights, new knowledge etc. The rewards can then be invested in research.  An

agent that fails to innovate successfully incurs the costs of research but receives no income and

eventually ‘dies’, to be replaced by another agent with an initially random kene.
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V. Implementation

The actors in the simulator are objects containing a property or attribute database as one of their

instance variables. Within this property database the actor's kene is represented by an S-expression

composed of operators and terminals. The operators are the set operators: union, intersection and

set-difference. The terminators are instances of classes that represent capabilities. When evaluated,

the S-expression yields a set of capability instances that constitutes the actor’s ‘potential innovation’.

The primary function of the executive in the simulator is to execute a genetic algorithm (GA) evolving

these kenes. This is an elaboration of standard genetic programming (GP), with the oracle providing

the fitness values (Koza, 1992).

During each cycle, the executive performs a GP crossover operation with the actor’s kene and the

kenes of the other actors in the network (if any). This operation consists of randomly selecting a

subtree of the actor’s kene, removing it and substituting a random subtree from one of the other

actors in the network. This is then repeated for each of the actor’s network partners.

The kene is also modified as a result of ‘research and development’.  The actor’s strategy

determines the relative proportions of the two types of R&D to be carried out:

1. a terminator is randomly selected and an instance from the same class is randomly

substituted.  This represents ‘normal’ R&D, providing the opportunity for incremental

improvement through changes to the value of a capability.  This kind of R&D has a relatively

small cost to the actor’s wealth (i.e. cumulated rewards).

2. A terminator is randomly selected and a randomly chosen instance from any class of

capability is substituted.  This represents the opportunity for more radical innovation (there is

a chance that the instance may be from a capability not previously possessed by the actor or,

indeed, by any actor in the population).  This form of innovation is relatively expensive.

The innovation oracle receives the results of evaluating an actor’s kene (a set of capability instances,

representing the particular combination of skills and techniques required to create this potential

innovation) and assesses it in a case study specific way. Typically, this will involve evaluating the set

against all the other potential innovations the oracle has yet seen using a Hamming distance measure

of similarity.  If the potential innovation is distinct from previous innovations (and has other desirable
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attributes), it will be awarded a high fitness value.  The oracle will calculate a reward for the

innovation, which is typically proportional to the fitness value. It will also provide a ‘report’ on the

innovation.  This provides a hint to the actor about how the innovation could be improved (i.e. obtain

a higher fitness value).  This hint consists of a capability class.  If the actor is able to provide an

innovation including an instance of this class, it is likely (but not certain) to improve its fitness.  The

selection of ‘hint’ is again a case specific matter.

VI. The Biotech Case Study

In the following paragraphs we first outline recent developments in the biotechnology-based

industries as an example par excellence of innovation networks and then illustrate the implementation

of this case in the model.

VI.1  Innovation Networks in Biotechnology7

Although biotechnology can be considered as one of the oldest technologies used by mankind

(yogurt making and beer brewing are illustrative examples), today biotechnology is at the forefront of

the creation of a knowledge based society. With the discovery of recombinant DNA and monoclonal

antibodies, the discipline of molecular biology was transformed into a seedbed of industrial

applications. However, those industrial firms that were most likely to exploit the new technological

opportunities offered by biotechnology did not at first have the knowledge base or absorptive

capacities to take advantage of it. Their competencies were focused on the dominant disciplines such

as organic chemistry or microbiology. Small firms, often those that had spun-off from universities,

were the first to recognize the tremendous opportunities offered by biotechnology in sectors such as

pharmaceuticals, agro-chemistry and environmental technologies.  It was in these firms that the first

industrial applications were developed. Additionally, in biotechnology, the frontier between basic and

applied research is often blurred. Although the time between the discovery of new knowledge and its

final embodiment in new products may be very long, the time between the creation of new

knowledge and the funding of industrial research aimed at its application is in general very short.

                        
7 See Saviotti (1998).
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Given this situation, it would be expected that the traditional actors, the so-called large diversified

firms (LDFs), with their commitment to obsolete technologies, would either import the new

knowledge or be replaced by science-based newcomers, the so-called dedicated biotechnology

firms (DBFs). However, what has happened is that both types of firm continue to co-exist.8  After a

phase of sharing labor between both camps in the 80s, the LDFs began financing the R&D

performed by the DBFs.  This was the seed for the current networking structure in the Biotech based

industries, which remains even in the 90s although almost all of the LDFs have developed their own

competencies in biotechnology and have successfully re-oriented their own research departments to

these new technologies. Today, DBFs are no longer considered as bridging institutions between new

areas of basic research and their industrial application, but as extended R&D work-benches that

provide LDFs with a broader orientation and more flexible research design. Innovation networks

have thus become a persistent feature of industrial innovation in the biotechnology sector.

VI.2 The Implementation of the Case Study in the Model9

The most important actors in the Biotech case are large diversified firms (LDFs) and dedicated

biotechnology firms (DBFs). Public research institutes and venture captalists are also important for

this case study. The two populations of firms differ sharply in their original competencies and

capabilities – their kenes in the terminology of the model. Whereas at the start the DBFs possess

well developed competencies in biotechnology, the technological competencies of LDFs are

completely oriented towards traditional technological approaches such as organic chemistry -

competencies in the new field of biotechnology are almost entirely missing. However, technological

competencies are not sufficient for the successful production and marketing of new goods.

Economic competencies play a decisive and complementary role for legal approval, marketing,

distribution etc. For the model, we assume that in the first place LDFs have well developed

economic competencies whereas DBFs start with almost no economic competencies.

In addition  and complementary to the technological competencies which constitute the basic

knowledge needed for developing new technologies, the firms build up technological capabilities in

the different strands within the biotechnology paradigm (e.g. gene-sequencing, combinatorial

                        
8 Grabowski and Vernon (1994)
9 A detailed analytical model description of the Biotech simulation model is in Saviotti/Pyka (1999).
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chemistry, bio-informatics etc.) oriented towards the introduction of an innovation based on these

new technologies. These capabilities are created in timely and costly processes by investing

resources into an R&D capital stock, the means for which become available either by earning money

through sales or by receiving money within a research collaboration.

In the innovation process the competencies and capabilities of the firms are aggregated - the

competencies thereby serving as a weight – and are transformed into an innovation probability. The

innovation probabilities grow with positive but decreasing rates reflecting the limited technological

opportunities of a specific technological trajectory – there is and end to everything, a relationship

known in the history of technology as Wolff’s Law.

In the platform model the innovation probability corresponds to the potential innovation and is

matched every period with a Poisson-distributed random number which is the first part of the

innovation oracle in the Biotech application. This particular distribution is chosen to reflect that

innovation is considered to be a rare event. Here, a methodological advantage of simulation models

compared to analytical models is revealed: there is almost no difference in an analytical optimization

model between the modeled subject and the scientist’s perspective.  In contrast, numerical

experiments allow for random distributions while the underlying statistical laws are hidden to the

modeled subject. Drawing on this feature of simulation analysis allows one to come close to

portraying true uncertainty, a decisive feature of innovation as emphasized in evolutionary economics.

Every time a new commodity passes the first part of the innovation oracle, the innovation is

evaluated by a market model which basically has the structure of a heterogeneous multi-product

oligopoly10. The quality of the innovation is compared with the qualities of already existing

competitive goods and described with a two-dimensional vector containing the relative consumers’

quality assessment as well as the price of the good. The competitive framework of the heterogeneous

oligopoly finally decides on innovation rents which can be invested in the further exploitation of

existing and the exploration of new technological trajectories. Accordingly, we find here a

combination of the fitness value and the reward flow of the innovation which represents the second

part of the innovation oracle within the Biotech application.

                        
10 A similar economic framework is used in Cantner/Pyka (1998).
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To learn and build up their capabilities and competencies, firms can decide to access external

knowledge and external funds in innovation networks supporting their innovative endeavors. An

overall network probability which endogenously depends on the industry structure, the age of the

industry life cycle etc. thereby determines the potential cooperation space by giving the maximum

number of possible new cooperations or the number of existing cooperations which are to be

terminated. As information on Biotech companies is widely spread and almost freely available on the

internet –(published to attract venture capital) search costs do not play a role in this case study. So

after firms have made their cooperation decision according to their specific requirements, they search

for the best cooperation partner with reciprocal plans within the population of Biotech firms. By

entering into bilateral relationships innovation networks emerge.  These are responsible for

considerable knowledge flows between the participating firms.

The knowledge flows within the innovation networks consist of the technological capabilities of the

partners and are responsible for the combination and reinforcement of their kenes. However, as

the absorptive capacities of the firms are not perfect, i.e. their capacity to integrate external know-

how into their own knowledge stocks do not allow perfect imitation of tacit and local know-how,

these knowledge flows are filtered, thereby also avoiding a technological assimilation of the involved

firms. Nevertheless, the innovation probabilities of firms engaged in networking are positively

affected in a twofold way by the external knowledge sources they can access: on the one hand, by

joining a network with firms following a similar technological trajectory the pace of innovation is

accelerated, on the other hand, by joining a network of technological heterogeneous firms, the

potential qualitative impact of the innovative outcome is likewise higher because of cross-fertilization

effects11 between different technologies.

Depending on the different development stages of firms within the biotechnology-based industries

different designs of collaborations are possible and these determine the reward mechanism. In

order to reduce complexity we have chosen two basic collaborative designs that include almost all

the contractual forms found in reality. The first design, ‘contractual R&D’, represents the

relationships between established LDFs and start-up DBFs, as they were frequently found during the

80s: a LDF finances the R&D performed in a DBF because of a lack of its own competency in the

biotechnology realm. By means of a contract, the large firm acquires not only all the intellectual

                        
11 See e.g. Kodama (1986) or Mokyr (1990).
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property rights of the potential innovation, but also incrementally builds up own competencies. Start-

up DBFs usually depend on these collaborative forms as they do not have their own funds necessary

to undertake long lasting and expensive innovative endeavors. Although they have to give away the

intellectual property rights of their innovation, they establish a positive reputation and also retain a

certain amount of the money they receive from the LDF, which allows them to pursue their own

independent technological developments. The second design, ‘joint R&D’, is found among  more

equal firms: two firms decide to combine their efforts in exploring and exploiting the technological

opportunity space. The first firm successfully passing the innovation oracle is rewarded with the

intellectual property rights. The other firm does not immediately gain from this innovation, but may

profit later from other innovations generated from the additional capabilities provided through the

collaboration.

VII. Conclusions

The increasing importance of innovation networks in technical change has been emphasised

elsewhere, especially in the evolutionary economics literature.  However, the processes by which

networks are formed, and their role in innovation, is not yet well understood, partly because of the

complexity of the dynamic processes involved and partly because the actors are heterogeneous and

therefore hard to model using traditional techniques.  We have shown in this paper how it is possible

to approach these issues through the construction of an agent-based simulation model that allows one

to specify, as hypotheses to be tested, the inter-relationships between new knowledge, knowledge

transfer, selection from the market, and reward structures.

Our prime focus has been on the development of a conceptual basis and a theoretical perspective on

the dynamics of innovation network formation.  Although we have illustrated the model using a case

study of Biotechnology, there remains a great deal yet to be done to test the model adequately.

Such testing will involve two rather different approaches:

1. The behaviour of the abstract model itself needs to be explored, through a sensitivity analysis

that will reveal the influence of the model structure.  For example, we still need to determine

under what circumstances the model generates collaborations between actors and therefore

yields networks.  Under some parameter settings it is possible for all actors to believe that

collaborations would be undesirable, and that they would be more effective devoting their
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resources to their own R&D.  Alternatively, under other conditions it is possible for all actors

to find the attractions of collaborations to be so strong that the result is a network that

includes every actor in the model.  Neither of these scenarios is unrealistic: there are sectors

where networks are uncommon or do not exist and one of the other case studies being

investigated by the SEIN project concerns a network that includes all the relevant actors

within the UK.  The model provides the opportunity for exploring the circumstances in which

these and other scenarios are generated.

2. The SEIN project is collecting data about innovation networks in four sectors: Biotech,

Mobile communications, Knowledge Intensive business Services and Combined Heat and

Power.  These represent four very different sectors and the characteristics of the networks in

the sectors are correspondingly diverse.  The model will be tested against data from these

case studies.  This will involve building a different innovation oracle for each.

Finally, it will be possible to draw policy conclusions about the consequences of fiscal and regulatory

changes on the propensity for forming networks to encourage innovation in different sectors.  The

model can be sued to examine ‘What if’ questions to see, in a qualitative way, whether proposed

policy changes are likely to have their desired effects.



20

References

Ahrweiler, P. (1999), Towards a General Description of Innovation Networks. Commonalities and
Differences in the SEIN Case Studies, SEIN-Working Paper, #3, September 1999.

Axelrod, R. (1997) Advancing the art of simulation in the social sciences.  In R. Conte, R.
Hegselmann and P.Terna (eds.) Simulating social phenomena, pp. 21-40.  Springer-
Verlag, Berlin.

Callon, M. (1992): The Dynamics of Techno-economic Networks. In: R. Coombs, P. P. Saviotti
and V. Walsh (eds.): Technological Change and Company Strategy. Economic and
sociological perspectives. London: Academic Press, pp. 72-102.

Cantner, U., Pyka, A. (1998), Absorbing Technological Spillovers, Simulations in an Evolutionary
Framework, Industrial and Corporate Change, Vol. 7.

Cohen W.M., Levinthal D. (1989), Innovation and Learning: The Two Faces of R&D, The Econo-
mic Journal, Vol. 99, 569-596.

Cooke, P., Morgan, K. (1994), The Creative Milieu: a Regional Perspective on Innovation, in:
Dodgson, M., Rothwell, M. (eds.), The Handbook of Industrial Innovation, Edward, Elgar,
Aldershot.

Cyert, R. M. and March, J. G. (1963). A Behavioral Theory of the Firm. Eaglewood Cliffs, NJ.:
Prentice Hall

Dosi, G. (1982). Technological Paradigms and Technological Trajectories: A Suggested
Interpretation of the Determinants and Directions of Technological Change. In: Research
Policy, 11, pp.147-162.

Dosi, G., et al. (eds.) (1988):  Technical Change and Economic Theory. London: Pinter.
Eliasson, G. (1995), General Purpose Technologies, Industrial Competence and Economic Growth

– With special Emphasis on the Diffusion of Advanced Methods of Integrated Production,
Working paper, Royal Institute of Technology, Stockholm.

Gibbons M., Limoges C., Nowotny H., Schwarztman S., Scott P., Trow M., (1994) The new
Production of Knowledge: The Dynamics of Science and Research in Contemporary
Societies, London, Sage Publications.

Gibbons, M., Limoges, C., Nowotny, H., Schwartzman, S., Scott, P., and Trow, M. (1994): The
New Production of Knowledge. The Dynamics of Science and Research in
Contemporary Societies. London: Sage.

Gilbert, N. (1997) ‘A simulation of the structure of academic science’ Sociological Research
Online vol. 2(2), <http://www.socresonline.org.uk/socresonline/2/2/3.html.

Gilbert, N. (1999), First Draft of a Model of an Innovation Network, SEIN-Working Paper, June
1999.

Grabowski H., Vernon J. (1994), Innovation and Structural Change in Pharmaceuticals and
Biotechnology, Industrial and Corporate Change, Vol. 3, 435-49.

Gross, L. J. (2000), Computer Systems and Models, Use of. To appear in: Encyclopedia of
Biodiversity, Volume 1 (S. A. Levin, ed.) Academic Press.

Klein, B. (1992), The Role of Positive Sum Games in Economic Growth, in: Scherer, F., Perlman,
M. (eds.), Entrepreneurship, Technological Innovation and Economic Growth, Studies in the
Schumpeterian Tradition, University of Michigan Press, Ann Arbor, MA.

Kodama, F.(1986), Technology Fusion and the New R&D, Harvard Business Review, July-
August, 1992, 70-78.

Koza, J. (1992) Genetic Programming.  MIT Press, Cambridge, MA.



21

Lundvall, B. A. (ed.) (1992):  National Systems of Innovation. Towards as Theory of
Innovation and Interactive Learning. London: Pinter.

Malerba, F. (1992), The Organization of the Innovative Process, in: Rosenberg, N. et al.(eds.),
Technology and the Welfare of Nations, Stanford University Press, CA.

Marin, B. and Mayntz, R. (eds.) (1991): Policy Networks. Empirical Evidence and Theoretical
Considerations. Frankfurt a.M./Boulder, CO: Campus/Westview.

Mayntz, R. and Scharpf, F.W. (eds.) (1995): Gesellschaftliche Selbstregelung und politische
Steuerung. Frankfurt a.M./Bolder/CO: Campus/Westview.

Mokyr, J. (1990), The Lever of Riches, Oxford University Press, New York.
Molina, A. (1993): In Search of Insights into the Generation of Techno-Economic Trends: Micro-

and Macro-Constituencies in the Microprocessor Industry. In: Research Policy, 22, pp.
479-506.

Morgan, K. (1997): The Learning Region: Institutions, Innovation and Regional Renewal, In:
Regional Studies, 31

Nelson, R.R. (1987): Understanding Technological Change as an Evolutionary Process.
Amsterdam: North Holland.

Nelson, R.R. (ed.) (1993):  National Innovation Systems. A Comparative Analysis. New York:
Oxford University Press.

Nelson, R.R. and Winter, S.G. (1982): An Evolutionary Theory of Economic Change.
Cambridge/MA: Harvard University Press.

Polanyi, M., (1962), Personal Knowledge: Towards a Post-Critical Philosophy, N.Y., Harper
Torchbook.

Pyka, A. (1999), Innovation Networks in Economics. From the Incentive-based to the Knowledge-
based Approaches, SEIN-Working Paper ‚ #1,  April 1999.

Pyka, A., Saviotti, P. (2000), Innovation Networks in the Biotechnology-Based Industries, SEIN-
Working Paper #7.

Sahal, D. (1985): Technology Guide-Posts and Innovation Avenues. In: Research Policy, 14, pp.
61-82.

Saviotti, P. (1998), Industrial Structure and the Dynamics of Knowledge Generation in
Biotechnology, in: Senker, J. (ed.), Biotechnology and Competitive Advantage –
Europe’s Firms and the US Challenge, Edward Elgar, Cheltenham.

Saviotti, P., Pyka, A. (1999), Conceptual Framework for a Simulation Model of Biotechnology
Innovation Networks, SEIN-Working Paper #5, October 1999.

Simon, H. (1955): A Behavioral Model of Rational Choice. In: Quarterly Journal of Economics,
69, pp. 99-108.

Stiglitz, J.E. (1987), Learning to Learn, Localized Learning and Technological Progress, in:
Dasgupta, P., Stoneman, P. (Hrsg.), Economic Policy and Technological Performance,
Cambridge, Mass., Cambridge University Press.

Weber M., Paul S. (1999), Political Forces Shaping the Innovation and Diffusion of Technologies:
an Overview, SEIN-Working Paper, #4, September 1999.

Wooldridge, M. and Jennings, N.R. (1995) Intelligent agents: theory and practice.  Knowledge
Engineering Review, 10: 115-152.


